If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x-10=120
We move all terms to the left:
x^2+3x-10-(120)=0
We add all the numbers together, and all the variables
x^2+3x-130=0
a = 1; b = 3; c = -130;
Δ = b2-4ac
Δ = 32-4·1·(-130)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-23}{2*1}=\frac{-26}{2} =-13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+23}{2*1}=\frac{20}{2} =10 $
| -5(7-c)+9(7-c)=-20 | | 7x+9=3x+10=110 | | 6(2x-9)=12x-50 | | 3x-4=-28+x | | x-(x*0,2)=60 | | w+423=584 | | 5w-2=3w=15 | | 250+26h=210+18h | | (3x+9)(3x-9)=0 | | 2(2x-5)+3x=4 | | v/21=8/13 | | x+3+7=2x+10-x | | 3p/4-27=-33 | | 7x+8–2x=38 | | x-(x*0,2)-10=60 | | 3.7x+8–2x=38 | | -6v-10=5v+1 | | 18x-3+44+6+25x=180 | | -28-8x=4(5x-7 | | 6(5+x)=96 | | 7(m+6)=49 | | 945=15u | | 8w-6w=-20 | | -17+5k=4(6k-9) | | -10n=-8n-8 | | 4(x+5)=9x+4x−34, | | 5^(3x-7)=25 | | 5=-(h+3) | | -3x-3=-3(1+x) | | 10-9f=10+f | | 3j+12=21 | | x-(x*0,2)-10-60=100 |